Ad
related to: exact function value calculator
Search results
Results From The WOW.Com Content Network
In mathematics, the values of the trigonometric functions can be expressed approximately, as in (/), or exactly, as in (/) = /.While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots.
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
It is a fast and efficient method for generating values of functions like the exponential or the trigonometric functions to within last-bit accuracy for almost all argument values without using extended precision arithmetic. The main idea in Gal's accurate tables is a different tabulation for the special function being computed.
Given a simply connected and open subset D of and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form (,) + (,) =,is called an exact differential equation if there exists a continuously differentiable function F, called the potential function, [1] [2] so that
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
Differential quadrature is the approximation of derivatives by using weighted sums of function values. [22] [23] Differential quadrature is of practical interest because its allows one to compute derivatives from noisy data.
At each iteration, there is a set of "working points" in which we know the value of f (and possibly also its derivative). Based on these points, we can compute a polynomial that fits the known values, and find its minimum analytically. The minimum point becomes a new working point, and we proceed to the next iteration: [1]: sec.5
In multivariate calculus, a differential or differential form is said to be exact or perfect (exact differential), as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function in an orthogonal coordinate system (hence is a multivariable function whose variables are independent, as they are always expected to be when treated in ...