Search results
Results From The WOW.Com Content Network
In such a case, properties that are closed with respect to taking induced subgraphs, are called induced-hereditary. The language of hereditary properties and induced-hereditary properties provides a powerful tool for study of structural properties of various types of generalized colourings. The most important result from this area is the unique ...
The study of these materials arises from the pioneering articles of Ludwig Boltzmann [1] [2] and Vito Volterra, [3] [4] in which they sought an extension of the concept of an elastic material. [5] The key assumption of their theory was that the local stress value at a time t depends upon the history of the local deformation up to t.
Walter Sutton (left) and Theodor Boveri (right) independently developed different parts of the chromosome theory of inheritance in 1902.. The Boveri–Sutton chromosome theory (also known as the chromosome theory of inheritance or the Sutton–Boveri theory) is a fundamental unifying theory of genetics which identifies chromosomes as the carriers of genetic material.
DNA's role in heredity was confirmed in 1952 when Alfred Hershey and Martha Chase in the Hershey–Chase experiment showed that DNA is the genetic material of the enterobacteria phage T2. [ 205 ] Photo 51 , showing X-ray diffraction pattern of DNA
The duplication and transmission of genetic material from one generation of cells to the next is the basis for molecular inheritance and the link between the classical and molecular pictures of genes. Organisms inherit the characteristics of their parents because the cells of the offspring contain copies of the genes in their parents' cells.
The hereditary material i.e. DNA (deoxyribonucleic acid) of an organism is composed of a sequence of four nucleotides in a specific pattern, which encodes information as a function of their order. Genomic organization refers to the linear order of DNA elements and their division into chromosomes .
Conversely, some phenotypes could be the result of multiple genotypes. The genotype is commonly mixed up with the phenotype which describes the result of both the genetic and the environmental factors giving the observed expression (e.g. blue eyes, hair color, or various hereditary diseases).
These alleles have new DNA sequences and can produce proteins with new properties. [14] So if an island was populated entirely by black mice, mutations could happen creating alleles for white fur. The combination of mutations creating new alleles at random, and natural selection picking out those that are useful, causes an adaptation .