Search results
Results From The WOW.Com Content Network
In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points.
The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...
The Banach fixed-point theorem gives a sufficient condition for the existence of attracting fixed points. A contraction mapping function defined on a complete metric space has precisely one fixed point, and the fixed-point iteration is attracted towards that fixed point for any initial guess in the domain of the function.
Banach's fixed-point theorem is also applied in proving the existence of solutions of ordinary differential equations, and is used in one proof of the inverse function theorem. [1] Contraction mappings play an important role in dynamic programming problems. [2] [3]
Schauder fixed-point theorem: Let C be a nonempty closed convex subset of a Banach space V. If f : C → C is continuous with a compact image, then f has a fixed point. Tikhonov (Tychonoff) fixed-point theorem: Let V be a locally convex topological vector space. For any nonempty compact convex set X in V, any continuous function f : X → X has ...
Likewise, Banach's fixed point theorem, based on earlier methods developed by Charles Émile Picard, was included in his dissertation, and was later extended by his students (for example in the Banach–Schauder theorem) and other mathematicians (in particular Brouwer and Poincaré and Birkhoff).
A fixed-point theorem is a result saying that at least one fixed point exists, under some general condition. [1] For example, the Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, fixed-point iteration will always converge to a fixed point.
There are also versions of the inverse function theorem for holomorphic functions, for differentiable maps between manifolds, for differentiable functions between Banach spaces, and so forth. The theorem was first established by Picard and Goursat using an iterative scheme: the basic idea is to prove a fixed point theorem using the contraction ...