When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    The free energy created is then used, via a chain of nearby electron acceptors, for a transfer of hydrogen atoms (as protons and electrons) from H 2 O or hydrogen sulfide towards carbon dioxide, eventually producing glucose. These electron transfer steps ultimately result in the conversion of the energy of photons to chemical energy.

  3. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    Electrons in pigment molecules can exist at specific energy levels. Under normal circumstances, they are at the lowest possible energy level, the ground state. However, absorption of light of the right photon energy can lift them to a higher energy level. Any light that has too little or too much energy cannot be absorbed and is reflected.

  4. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    At the reaction center, the electrons on the special chlorophyll molecule will be excited and ultimately transferred away by electron carriers. (If the electrons were not transferred away after excitation to a high energy state, they would lose energy by fluorescence back to the ground state, which would not allow plants to drive photosynthesis.)

  5. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.

  6. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient. As the protons flow back through an enzyme called ATP synthase, ATP is generated from ADP and inorganic

  7. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    The electrons from the initial light reaction reach Photosystem I, then are raised to a higher energy level by light energy and then received by an electron acceptor and reduce NADP + to NADPH. The electrons lost from Photosystem II get replaced by the oxidation of water, which is "split" into protons and oxygen by the oxygen-evolving complex ...

  8. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    P700 receives energy from antenna molecules and uses the energy from each photon to raise an electron to a higher energy level (P700*). These electrons are moved in pairs in an oxidation/reduction process from P700* to electron acceptors, leaving behind P700 +. The pair of P700* - P700 + has an electric potential of about −1.2 volts.

  9. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    By replenishing lost electrons with electrons from the splitting of water, photosystem II provides the electrons for all of photosynthesis to occur. The hydrogen ions (protons) generated by the oxidation of water help to create a proton gradient that is used by ATP synthase to generate ATP .