When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hexahedron - Wikipedia

    en.wikipedia.org/wiki/Hexahedron

    A hexahedron (pl.: hexahedra or hexahedrons) or sexahedron (pl.: sexahedra or sexahedrons) is any polyhedron with six faces. A cube, for example, is a regular hexahedron with all its faces square, and three squares around each vertex. There are seven topologically distinct convex hexahedra, [1] one of which exists in two mirror image forms ...

  3. Types of mesh - Wikipedia

    en.wikipedia.org/wiki/Types_of_mesh

    A cuboid, a topological cube, has 8 vertices, 12 edges, and 6 quadrilateral faces, making it a type of hexahedron. In the context of meshes, a cuboid is often called a hexahedron, hex, or brick. [1] For the same cell amount, the accuracy of solutions in hexahedral meshes is the highest.

  4. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Definitions based on the idea of a bounding surface rather than a solid are also common. [8] For instance, O'Rourke (1993) defines a polyhedron as a union of convex polygons (its faces), arranged in space so that the intersection of any two polygons is a shared vertex or edge or the empty set and so that their union is a manifold . [ 9 ]

  5. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    In geometry, a cube or regular hexahedron is a three-dimensional solid object bounded by six congruent square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It has twelve congruent edges and eight vertices.

  6. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.

  7. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex. A regular polyhedron is identified by its Schläfli symbol of the form { n , m }, where n is the number of sides of each face and m the number of faces ...

  8. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space.Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.

  9. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    Three equivalent definitions of parallelepiped are a hexahedron with three pairs of parallel faces, a polyhedron with six faces , each of which is a parallelogram, and; a prism of which the base is a parallelogram.