Search results
Results From The WOW.Com Content Network
A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets [2] (i.e., the subsets are nonempty mutually disjoint sets). Equivalently, a family of sets P is a partition of X if and only if all of the following conditions hold: [ 3 ]
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. [1] Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set , while in other theories, its existence can be deduced.
The set {} is empty and thus not inhabited. Naturally, the example section thus focuses on non-empty sets that are not provably inhabited. It is easy to give such examples by using the axiom of separation, as with it logical statements can always be
Although the empty set has Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null. More generally, on a given measure space = (,,) a null set is a set such that () =
The power set of the empty set is a singleton whose only element is the empty set. For a non-empty set S, let be any element of the set and T its relative complement; then the power set of S is a union of a power set of T and a power set of T whose each element is expanded with the e element.
The definition of a finite set is given independently of natural numbers: [3] Definition: A set is finite if and only if any non empty family of its subsets has a minimal element for the inclusion order. Definition: a cardinal n is a natural number if and only if there exists a finite set of which the cardinal is n. 0 = Card (∅)
In the second sense, this phrase is used when that proposition is relied on for the purpose of justifying proofs that take the following form: to prove that every natural number belongs to a specified set , assume the contrary, which implies that the set of counterexamples is non-empty and thus contains a smallest counterexample. Then show that ...