Search results
Results From The WOW.Com Content Network
In mathematics, the determinant is a scalar-valued function of the entries of a square matrix.The determinant of a matrix A is commonly denoted det(A), det A, or | A |.Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix.
[a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...
The most popular of which for computing functional determinants is the zeta function regularization. [1] For instance, this allows for the computation of the determinant of the Laplace and Dirac operators on a Riemannian manifold, using the Minakshisundaram–Pleijel zeta function. Otherwise, it is also possible to consider the quotient of two ...
The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The eigenvalues of the Hessian at that point are the principal curvatures of the function, and the eigenvectors are the principal directions of curvature.
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Using statistical theory, statisticians compress the information-matrix using real-valued summary statistics; being real-valued functions, these "information criteria" can be maximized. [8] The traditional optimality-criteria are invariants of the information matrix; algebraically, the traditional optimality-criteria are functionals of the ...
In probability theory and statistics, ... is the determinant of , also known as the generalized ... Probability density of a function ...
This function is real-valued because it corresponds to a random variable that is symmetric around the origin; however characteristic functions may generally be complex-valued. In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution.