Ads
related to: dipole antenna circuit diagram
Search results
Results From The WOW.Com Content Network
The G5RV antenna is a dipole antenna fed indirectly, through a carefully chosen length of 300 Ω or 450 Ω twin lead, which acts as an impedance matching network to connect (through a balun) to a standard 50 Ω coaxial transmission line. The sloper antenna is a slanted vertical dipole antenna attached to the top of a single tower. The element ...
The top shows the directive pattern of a horn antenna, the bottom shows the omnidirectional pattern of a simple vertical dipole antenna. In the field of antenna design the term radiation pattern (or antenna pattern or far-field pattern) refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other ...
Diagram of the electric fields (blue) and magnetic fields (red) radiated by a dipole antenna (black rods) during transmission. More complex antennas increase the directivity of the antenna. Additional elements in the antenna structure, which need not be directly connected to the receiver or transmitter, increase its directionality.
Inverted-'V' antenna When the two arms of a dipole are individually straight, but bent towards each other in a 'V' shape, at an angle noticeably less than 180°, the dipole is called a 'V' antenna, and when the dipole arms' end closer to the ground than their center branch-point, the antenna is called an inverted-'V' . The inverted-'V' is ...
A log-periodic antenna (LP), also known as a log-periodic array or log-periodic aerial, is a multi-element, directional antenna designed to operate over a wide band of frequencies. It was invented by John Dunlavy in 1952.
The addition of parasitic elements gives a diminishing improvement in the antenna's gain. [2] Adding a reflector to a dipole, to make a 2 element Yagi, increases the gain by about 5 dB over the dipole. Adding a director to this, to give a 3 element Yagi, gives a gain of about 7 dB over a dipole.
For a linearly-polarized antenna, this is the plane containing the electric field vector (sometimes called the E aperture) and the direction of maximum radiation. The electric field or "E" plane determines the polarization or orientation of the radio wave.
Animated diagram of a half-wave dipole antenna receiving a radio wave. The antenna consists of two metal rods connected to a receiver R. The electric field (E, green arrows) of the incoming wave results in oscillation of the electrons in the rods, charging the ends alternately positive (+) and negative (−).