Search results
Results From The WOW.Com Content Network
The PROPT [1] MATLAB Optimal Control Software is a new generation platform for solving applied optimal control (with ODE or DAE formulation) and parameters estimation problems. The platform was developed by MATLAB Programming Contest Winner, Per Rutquist in 2008. The most recent version has support for binary and integer variables as well as an ...
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
The matrix exponential of another matrix (matrix-matrix exponential), [24] is defined as = = for any normal and non-singular n×n matrix X, and any complex n×n matrix Y. For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y , because the multiplication operator for matrix ...
In control theory, we may need to find out whether or not a system such as ˙ = + () = + is controllable, where , , and are, respectively, , , and matrices for a system with inputs, state variables and outputs.
In linear algebra, two rectangular m-by-n matrices A and B are called equivalent if = for some invertible n-by-n matrix P and some invertible m-by-m matrix Q.Equivalent matrices represent the same linear transformation V → W under two different choices of a pair of bases of V and W, with P and Q being the change of basis matrices in V and W respectively.
[a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...
In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems. [1] The matrix relates the outputs of the system to its inputs.
Here, vec(X) denotes the vectorization of the matrix X, formed by stacking the columns of X into a single column vector. It now follows from the properties of the Kronecker product that the equation AXB = C has a unique solution, if and only if A and B are invertible ( Horn & Johnson 1991 , Lemma 4.3.1).