Search results
Results From The WOW.Com Content Network
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0, a mathematical truth. But the same substitution applied to the original equation results in x/6 + 0/0 = 1, which is mathematically meaningless.
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .
A split-complex number has two real number components x and y, and is written = +. The conjugate of z is z ∗ = x − y j . {\displaystyle z^{*}=x-yj.} Since j 2 = 1 , {\displaystyle j^{2}=1,} the product of a number z with its conjugate is N ( z ) := z z ∗ = x 2 − y 2 , {\displaystyle N(z):=zz^{*}=x^{2}-y^{2},} an isotropic quadratic form .
For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...
An integral quadratic form has integer coefficients, such as x 2 + xy + y 2; equivalently, given a lattice Λ in a vector space V (over a field with characteristic 0, such as Q or R), a quadratic form Q is integral with respect to Λ if and only if it is integer-valued on Λ, meaning Q(x, y) ∈ Z if x, y ∈ Λ.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
The case (x, y, z) = (3, 5, 5) and all its permutations were proven by Bjorn Poonen in 1998. [25] The case (x, y, z) = (3, 6, n) and all its permutations were proven for n ≥ 3 by Bennett, Chen, Dahmen and Yazdani in 2014. [5] The case (x, y, z) = (2n, 3, 4) and all its permutations were proven for n ≥ 2 by Bennett, Chen, Dahmen and Yazdani ...