Search results
Results From The WOW.Com Content Network
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0, a mathematical truth. But the same substitution applied to the original equation results in x/6 + 0/0 = 1, which is mathematically meaningless.
The case (x, y, z) = (3, 5, 5) and all its permutations were proven by Bjorn Poonen in 1998. [25] The case (x, y, z) = (3, 6, n) and all its permutations were proven for n ≥ 3 by Bennett, Chen, Dahmen and Yazdani in 2014. [5] The case (x, y, z) = (2n, 3, 4) and all its permutations were proven for n ≥ 2 by Bennett, Chen, Dahmen and Yazdani ...
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
The axes of the original frame are denoted as x, y, z and the axes of the rotated frame as X, Y, Z.The geometrical definition (sometimes referred to as static) begins by defining the line of nodes (N) as the intersection of the planes xy and XY (it can also be defined as the common perpendicular to the axes z and Z and then written as the vector product N = z × Z).
The paraboloid y = x z is shown in blue and orange. The paraboloid x = y z is shown in cyan and purple. In the image the paraboloids are seen to intersect along the z = 0 axis. If the paraboloids are extended, they should also be seen to intersect along the lines z = 1, y = x; z = −1, y = −x. The two paraboloids together look like a pair of ...