Search results
Results From The WOW.Com Content Network
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
View of Carleton Laboratory testing hi-bay and mezzanine. An array of universal testing machines can be seen on the test floor.. Robert A. W. Carleton Strength of Material Laboratory (Carleton Lab) is a civil engineering materials testing laboratory affiliated with the Department of Civil Engineering and Engineering Mechanics (CEEM) in the Columbia School of Engineering and Applied Science.
This material exhibits an ultra-high hardness, higher than any reported ultrafine-grained nickel. The exceptional strength is resulted from the appearance of low-angle grain boundaries, which have low-energy states efficient for enhancing structure stability. Another method to stabilize grain boundaries is the addition of nonmetallic impurities.
A typical stress–strain curve for a brittle material will be linear. For some materials, such as concrete, tensile strength is negligible compared to the compressive strength and it is assumed to be zero for many engineering applications. Glass fibers have a tensile strength greater than that of steel, but bulk glass usually does not.
According to the classical theories of elastic or plastic structures made from a material with non-random strength (f t), the nominal strength (σ N) of a structure is independent of the structure size (D) when geometrically similar structures are considered. [1] Any deviation from this property is called the size effect.
The characteristic strength is defined as the strength of the concrete below which not more than 5% of the test results are expected to fall. [ 16 ] For design purposes, this compressive strength value is restricted by dividing with a factor of safety, whose value depends on the design philosophy used.
The theoretical strength can also be approximated using the fracture work per unit area, which result in slightly different numbers. However, the above derivation and final approximation is a commonly used metric for evaluating the advantages of a material's mechanical properties.
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.