Search results
Results From The WOW.Com Content Network
As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction 5 / 7 when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒Erdős–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
The elements of a generating set of this semigroup are related to the sequence of numbers involved in the still open Collatz conjecture or the "3x + 1 problem". The 3x + 1 semigroup has been used to prove a weaker form of the Collatz conjecture. In fact, it was in such context the concept of the 3x + 1 semigroup was introduced by H. Farkas in ...
For example, a Fourier series of sine and cosine functions, all continuous, may converge pointwise to a discontinuous function such as a step function. Carmichael's totient function conjecture was stated as a theorem by Robert Daniel Carmichael in 1907, but in 1922 he pointed out that his proof was incomplete. As of 2016 the problem is still open.
For the Diophantine equation a n/m + b n/m = c n/m with n not equal to 1, Bennett, Glass, and Székely proved in 2004 for n > 2, that if n and m are coprime, then there are integer solutions if and only if 6 divides m, and a 1/m, b 1/m, and c 1/m are different complex 6th roots of the same real number. [171]
In his thesis, Boyce identified a pair of functions that commute under composition, but do not have a common fixed point, proving the fixed point conjecture to be false. [14] In 1963, Glenn Baxter and Joichi published a paper about the fixed points of the composite function () = (()) = (()).
However, 1 is a square mod 3 (equal to the square of both 1 and 2 mod 3), so there can be no similar identity for all values of that are congruent to 1 mod 3. More generally, as 1 is a square mod n {\displaystyle n} for all n > 1 {\displaystyle n>1} , there can be no complete covering system of modular identities for all n {\displaystyle n ...
The Fermat–Catalan conjecture is an open conjecture dealing with such cases (the condition of this conjecture is that the sum of the reciprocals is less than 1). If we allow at most one of the exponents to be 2, then there may be only finitely many solutions (except the case 1 m + 2 3 = 3 2 {\displaystyle 1^{m}+2^{3}=3^{2}} ).