Search results
Results From The WOW.Com Content Network
A regular hexagon has Schläfli symbol {6} [2] and can also be constructed as a truncated equilateral triangle, t{3}, which alternates two types of edges. A regular hexagon is defined as a hexagon that is both equilateral and equiangular. It is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an ...
This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals , circumscribing quadrilaterals , and circumscriptible ...
The most famous of these problems, squaring the circle, otherwise known as the quadrature of the circle, involves constructing a square with the same area as a given circle using only straightedge and compass. Squaring the circle has been proved impossible, as it involves generating a transcendental number, that is, √ π.
The center of the incircle is a triangle center called the triangle's incenter. [1] An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. [3]
In geometry, a circumscribed circle for a set of points is a circle passing through each of them. Such a circle is said to circumscribe the points or a polygon formed from them; such a polygon is said to be inscribed in the circle. Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle.
Every circle has an inscribed regular polygon of n sides, for any n ≥ 3, and every regular polygon can be inscribed in some circle (called its circumcircle). Every regular polygon has an inscribed circle (called its incircle), and every circle can be inscribed in some regular polygon of n sides, for any n ≥ 3.
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively.
A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined ...