When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthocenter - Wikipedia

    en.wikipedia.org/wiki/Orthocenter

    The three altitudes of a triangle intersect at the orthocenter, which for an acute triangle is inside the triangle. The orthocenter of a triangle, usually denoted by H, is the point where the three (possibly extended) altitudes intersect. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute. For a right triangle ...

  3. Orthocentric system - Wikipedia

    en.wikipedia.org/wiki/Orthocentric_system

    In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular , and the four circles passing through any three of the four points have the same radius.

  4. Altitude (triangle) - Wikipedia

    en.wikipedia.org/wiki/Altitude_(triangle)

    The three altitudes of a triangle intersect at the orthocenter, which for an acute triangle is inside the triangle. The orthocenter of a triangle, usually denoted by H, is the point where the three (possibly extended) altitudes intersect. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute. For a right triangle ...

  5. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .

  6. de Longchamps point - Wikipedia

    en.wikipedia.org/wiki/De_Longchamps_point

    Let the given triangle have vertices , , and , opposite the respective sides , , and , as is the standard notation in triangle geometry.In the 1886 paper in which he introduced this point, de Longchamps initially defined it as the center of a circle orthogonal to the three circles , , and , where is centered at with radius and the other two circles are defined symmetrically.

  7. Polar circle (geometry) - Wikipedia

    en.wikipedia.org/wiki/Polar_circle_(geometry)

    where A, B, C denote both the triangle's vertices and the angle measures at those vertices; H is the orthocenter (the intersection of the triangle's altitudes); D, E, F are the feet of the altitudes from vertices A, B, C respectively; R is the triangle's circumradius (the radius of its circumscribed circle); and a, b, c are the lengths of the triangle's sides opposite vertices A, B, C ...

  8. Euler line - Wikipedia

    en.wikipedia.org/wiki/Euler_line

    In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

  9. Sylvester's triangle problem - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_triangle_problem

    Those points form the triangle with as the center of its circumcircle. Now let H {\displaystyle H} denote the orthocenter of the triangle, then connection vector O H → {\displaystyle {\overrightarrow {OH}}} is equal to the sum of the three vectors: [ 1 ] [ 2 ]