Search results
Results From The WOW.Com Content Network
Flip-flop excitation tables [ edit ] In order to complete the excitation table of a flip-flop , one needs to draw the Q(t) and Q(t + 1) for all possible cases (e.g., 00, 01, 10, and 11), and then make the value of flip-flop such that on giving this value, one shall receive the input as Q(t + 1) as desired.
The number of flip-flops being cascaded is referred to as the "ranking"; "dual-ranked" flip flops (two flip-flops in series) is a common situation. So-called metastable-hardened flip-flops are available, which work by reducing the setup and hold times as much as possible, but even these cannot eliminate the problem entirely.
In the state-transition table, all possible inputs to the finite-state machine are enumerated across the columns of the table, while all possible states are enumerated across the rows. If the machine is in the state S 1 (the first row) and receives an input of 1 (second column), the machine will stay in the state S 1 .
A clock domain is defined as a group of flip-flops with a common clock. Such architectures can form a circuit guaranteed free of metastability (below a certain maximum clock frequency, above which first metastability, then outright failure occur), assuming a low-skew common clock. However, even then, if the system has a dependence on any ...
At each advance, the bit on the far left (i.e. "data in") is shifted into the first flip-flop's output. The bit on the far right (i.e. "data out") is shifted out and lost. The data is stored after each flip-flop on the "Q" output, so there are four storage "slots" available in this arrangement, hence it is a 4-bit register.
If the output of the flip-flop is low, and a high clock pulse is applied with the input being a low pulse, then there is no need for a state transition. The extra computation to sample the inputs cause an increase in setup time of the flip-flop; this is a disadvantage of this technique.
A multivibrator is an electronic circuit used to implement a variety of simple two-state [1] [2] [3] devices such as relaxation oscillators, timers, latches and flip-flops.The first multivibrator circuit, the astable multivibrator oscillator, was invented by Henri Abraham and Eugene Bloch during World War I.
An asynchronous reset (or set) is not dependent on a clock signal (hence the name), this is mentioned in the introduction to flip-flops. Check the timing-diagram in the datasheets for 7400-series parts (eg. philips/nxp, TI, etc) and you will get a feel for it, as many such parts have both asynchronous and synchronous inputs.