Search results
Results From The WOW.Com Content Network
It is simply represented as n 2 and is called the absolute refractive index of medium 2. The absolute refractive index n of an optical medium is defined as the ratio of the speed of light in vacuum, c = 299 792 458 m/s, and the phase velocity v of light in the medium, =.
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".
Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
The calculation of glass properties allows "fine-tuning" of desired material characteristics, e.g., the refractive index. [1]The calculation of glass properties (glass modeling) is used to predict glass properties of interest or glass behavior under certain conditions (e.g., during production) without experimental investigation, based on past data and experience, with the intention to save ...
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
The OPD can be calculated from the following equation: = where d 1 and d 2 are the distances of the ray passing through medium 1 or 2, n 1 is the greater refractive index (e.g., glass) and n 2 is the smaller refractive index (e.g., air).
The variation of refractive index vs. vacuum wavelength for various glasses. The wavelengths of visible light are shaded in grey. Influences of selected glass component additions on the mean dispersion of a specific base glass (n F valid for λ = 486 nm (blue), n C valid for λ = 656 nm (red)) [3]
For common optical glasses, the refractive index calculated with the three-term Sellmeier equation deviates from the actual refractive index by less than 5×10 −6 over the wavelengths' range [5] of 365 nm to 2.3 μm, which is of the order of the homogeneity of a glass sample. [6]