When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Semicircle - Wikipedia

    en.wikipedia.org/wiki/Semicircle

    In mathematics (and more specifically geometry), a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180° (equivalently, π radians, or a half-turn). It only has one line of symmetry (reflection symmetry).

  3. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = ⁠ 1 / 2 ⁠ × 2πr × r, holds for a circle.

  4. Semiperimeter - Wikipedia

    en.wikipedia.org/wiki/Semiperimeter

    The area A of any triangle is the product of its inradius (the radius of its inscribed circle) and its semiperimeter: A = r s . {\displaystyle A=rs.} The area of a triangle can also be calculated from its semiperimeter and side lengths a, b, c using Heron's formula :

  5. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    A set of sides that can form a cyclic quadrilateral can be arranged in any of three distinct sequences each of which can form a cyclic quadrilateral of the same area in the same circumcircle (the areas being the same according to Brahmagupta's area formula). Any two of these cyclic quadrilaterals have one diagonal length in common. [17]: p. 84

  6. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    Informally, it is the "average" of all points of . For an object of uniform composition, or in other words, has the same density at all points, the centroid of a body is also its center of mass . In the case of two-dimensional objects shown below, the hyperplanes are simply lines.

  7. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  8. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    The arc length, from the familiar geometry of a circle, is = The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ):

  9. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    The intersection points T 1 and T 2 of the circle C and the new circle are the tangent points for lines passing through P, by the following argument. The line segments OT 1 and OT 2 are radii of the circle C ; since both are inscribed in a semicircle, they are perpendicular to the line segments PT 1 and PT 2 , respectively.