Search results
Results From The WOW.Com Content Network
When two signals with these waveforms, same period, and opposite phases are added together, the sum + is either identically zero, or is a sinusoidal signal with the same period and phase, whose amplitude is the difference of the original amplitudes. The phase shift of the co-sine function relative to the sine function is +90°.
The equations describing electromagnetic radiation in a homogeneous dielectric medium admit as special solutions that are sinusoidal plane waves. In electromagnetism , the field F {\displaystyle F} is typically the electric field , magnetic field , or vector potential , which in an isotropic medium is perpendicular to the direction of ...
The input sinusoidal voltage is usually defined to have zero phase, meaning that it is arbitrarily chosen as a convenient time reference. So the phase difference is attributed to the current function, e.g. sin(2 π ft + φ), whose orthogonal components are sin(2 π ft) cos(φ) and sin(2 π ft + π /2) sin(φ), as we have seen.
Sinusoidal plane-wave solutions are particular solutions to the wave equation. The general solution of the electromagnetic wave equation in homogeneous, linear, time-independent media can be written as a linear superposition of plane-waves of different frequencies and polarizations .
Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. [1] The instantaneous phase (also known as local phase or simply phase ) of a complex-valued function s ( t ), is the real-valued function:
An advantage of the modern Fourier transform is that while the sine and cosine transforms together are required to extract the phase information of a frequency, the modern Fourier transform instead compactly packs both phase and amplitude information inside its complex valued result. But a disadvantage is its requirement on understanding ...
Similar to the Fourier transform, Prony's method extracts valuable information from a uniformly sampled signal and builds a series of damped complex exponentials or damped sinusoids. This allows the estimation of frequency, amplitude, phase and damping components of a signal.
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.