When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  3. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    For the case of a function with at most countably many critical points (such as a Morse function) and compact sublevels, as well as with Lipschitz continuous gradient where one uses standard GD with learning rate <1/L (see the section "Stochastic gradient descent"), then convergence is guaranteed, see for example Chapter 12 in Lange (2013 ...

  4. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [33]

  5. Descent direction - Wikipedia

    en.wikipedia.org/wiki/Descent_direction

    Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method. More generally, if P {\displaystyle P} is a positive definite matrix, then p k = − P ∇ f ( x k ) {\displaystyle p_{k}=-P\nabla f(x_{k})} is a descent direction at x k {\displaystyle x_{k}} . [ 1 ]

  6. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  7. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    These minimization problems arise especially in least squares curve fitting. The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and ...

  9. Bregman method - Wikipedia

    en.wikipedia.org/wiki/Bregman_method

    Since Linearized Bregman is mathematically equivalent to gradient descent, it can be accelerated with methods to accelerate gradient descent, such as line search, L-BGFS, Barzilai-Borwein steps, or the Nesterov method; the last has been proposed as the accelerated linearized Bregman method. [5] [9]