When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.

  3. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    Dixon's method is based on finding a congruence of squares modulo the integer N which is intended to factor. Fermat's factorization method finds such a congruence by selecting random or pseudo-random x values and hoping that the integer x 2 mod N is a perfect square (in the integers):

  4. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The integers and the polynomials over a field share the property of unique factorization, that is, every nonzero element may be factored into a product of an invertible element (a unit, ±1 in the case of integers) and a product of irreducible elements (prime numbers, in the case of integers), and this factorization is unique up to rearranging ...

  6. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime. The factorizations take the form of an optional unit multiplied by integer powers of Gaussian primes. Note that there are rational primes which are not Gaussian primes.

  7. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  8. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    To factorize the initial polynomial, it suffices to factorize each square-free factor. Square-free factorization is therefore the first step in most polynomial factorization algorithms. Yun's algorithm extends this to the multivariate case by considering a multivariate polynomial as a univariate polynomial over a polynomial ring.

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS). A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a).