When.com Web Search

  1. Ad

    related to: graph fourier transform pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Graph Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Graph_Fourier_transform

    Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis. The Graph Fourier transform is important in spectral graph theory. It is widely applied in the recent study of graph structured learning algorithms, such as the widely employed convolutional networks.

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency.

  4. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    Graph-based signal processing is based on the graph Fourier transform that extends the traditional discrete Fourier transform by substituting the standard basis of complex sinusoids for eigenvectors of the Laplacian matrix of a graph corresponding to the signal.

  5. Triangular function - Wikipedia

    en.wikipedia.org/wiki/Triangular_function

    Triangular functions are useful in signal processing and communication systems engineering as representations of idealized signals, and the triangular function specifically as an integral transform kernel function from which more realistic signals can be derived, for example in kernel density estimation.

  6. Butterfly diagram - Wikipedia

    en.wikipedia.org/wiki/Butterfly_diagram

    Signal-flow graph connecting the inputs x (left) to the outputs y that depend on them (right) for a "butterfly" step of a radix-2 Cooley–Tukey FFT. This diagram resembles a butterfly (as in the morpho butterfly shown for comparison), hence the name, although in some countries it is also called the hourglass diagram.

  7. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    The discrete version of the Fourier transform (see below) can be evaluated quickly on computers using fast Fourier transform (FFT) algorithms. [8] In forensics, laboratory infrared spectrophotometers use Fourier transform analysis for measuring the wavelengths of light at which a material will absorb in the infrared spectrum.

  8. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/.../Discrete-time_Fourier_transform

    The lower right corner depicts samples of the DTFT that are computed by a discrete Fourier transform (DFT). The utility of the DTFT is rooted in the Poisson summation formula, which tells us that the periodic function represented by the Fourier series is a periodic summation of the continuous Fourier transform: [b]

  9. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    The discrete Fourier transform then converts convolution into multiplication, which in the matrix setting corresponds to diagonalization. The C ∗ {\displaystyle C^{*}} -algebra of all circulant matrices with complex entries is isomorphic to the group C ∗ {\displaystyle C^{*}} -algebra of Z / n Z . {\displaystyle \mathbb {Z} /n\mathbb {Z} .}