Search results
Results From The WOW.Com Content Network
To test the divisibility of a number by a ... 9 − 1 + 8 − 0 + 8 − 2 = 22 = 2 × 11. ... The number 510,517,813 leaves a remainder of 1 on dividing by 7. Proof ...
Two properties of 1001 are the basis of a divisibility test for 7, 11 and 13. The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors ...
For example, if a = 2 and p = 7, then 2 7 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7. If a is not divisible by p, that is, if a is coprime to p, then Fermat's little theorem is equivalent to the statement that a p − 1 − 1 is an integer multiple of p, or in symbols: [1] [2] ().
This means that, for n up to 2.5 × 10 10, if 2 n −1 (modulo n) equals 1, then n is prime, unless n is one of these 21853 pseudoprimes. Some composite numbers (Carmichael numbers) have the property that a n − 1 is 1 (modulo n) for every a that is coprime to n. The smallest example is n = 561 = 3·11·17, for which a 560 is 1 (modulo 561 ...
A sanity test can refer to various orders of magnitude and other simple rule-of-thumb devices applied to cross-check mathematical calculations. For example: If one were to attempt to square 738 and calculated 54,464, a quick sanity check could show that this result cannot be true. Consider that 700 < 738, yet 700 2 = 7 2 × 100 2 = 490,000 ...
Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.
In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if > > are coprime integers, then for any integer , there is a prime number p (called a primitive prime divisor) that divides and does not divide for any positive integer <, with the following exceptions:
6: an even number that passes the divisibility test for 3. 7: sum of all the digits is a multiple of 7. 5: successive subtraction of final two digits from all the other digits yields a multiple of 5. 12: an even number that passes the divisibility test for 5. Base 11 (a prime base, for comparison): 2: sum of all the digits is a multiple of 2.