When.com Web Search

  1. Ad

    related to: finding roots of trinomial equations

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding the root of a linear polynomial (degree one) is easy and needs only one division: the general equation + = has solution = /. For quadratic polynomials (degree two), the quadratic formula produces a solution, but its numerical evaluation may require some care for ensuring numerical stability.

  3. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.

  4. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    The roots , of the quadratic polynomial () = + + satisfy + =, =. The first of these equations can be used to find the minimum (or maximum) of P ; see Quadratic equation § Vieta's formulas .

  5. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    The root separation is a fundamental parameter of the computational complexity of root-finding algorithms for polynomials. In fact, the root separation determines the precision of number representation that is needed for being certain of distinguishing distinct roots.

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  7. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots −2, −1 (repeated root), and −1/3 of the quartic 3x 4 +13x 3 +19x 2 +11x+2 using Lill's method. Black segments are labeled with their lengths (coefficients in the equation), while each colored line with initial slope m and the same endpoint corresponds to a real root.

  8. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    A root of a nonzero univariate polynomial P is a value a of x such that P(a) = 0. In other words, a root of P is a solution of the polynomial equation P(x) = 0 or a zero of the polynomial function defined by P. In the case of the zero polynomial, every number is a zero of the corresponding function, and the concept of root is rarely considered.

  9. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating ⁠ ⁠ and ⁠ ⁠, which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]