Ad
related to: 5 gauss magnetic field safety system analysis pdf solution manual
Search results
Results From The WOW.Com Content Network
In this experiment, a static magnetic field runs through a long magnetic wire (e.g., an iron wire magnetized longitudinally). Outside of this wire the magnetic induction is zero, in contrast to the vector potential, which essentially depends on the magnetic flux through the cross-section of the wire and does not vanish outside.
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted.
The electric field E and magnetic field B of Maxwell's equations contain only "physical" degrees of freedom, in the sense that every mathematical degree of freedom in an electromagnetic field configuration has a separately measurable effect on the motions of test charges in the vicinity.
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
The electromagnetic tensor is the combination of the electric and magnetic fields into a covariant antisymmetric tensor whose entries are B-field quantities. [1] = (/ / / / / /) and the result of raising its indices is = = (/ / / / / /), where E is the electric field, B the magnetic field, and c the speed of light.
In the Gaussian system, unlike the ISQ, the electric field E G and the magnetic field B G have the same dimension. This amounts to a factor of c between how B is defined in the two unit systems, on top of the other differences. [3] (The same factor applies to other magnetic quantities such as the magnetic field, H, and magnetization, M.)
The magnetic field B can be depicted via field lines (also called flux lines) – that is, a set of curves whose direction corresponds to the direction of B, and whose areal density is proportional to the magnitude of B. Gauss's law for magnetism is equivalent to the statement that the field lines have neither a beginning nor an end: Each one ...
In electromagnetism, the Lorenz condition is generally used in calculations of time-dependent electromagnetic fields through retarded potentials. [2] The condition is , =, where is the four-potential, the comma denotes a partial differentiation and the repeated index indicates that the Einstein summation convention is being used.