Search results
Results From The WOW.Com Content Network
(defun integrate-composite-booles-rule (f a b n) "Calculates the composite Boole's rule numerical integral of the function F in the closed interval extending from inclusive A to inclusive B across N subintervals."
In numerical analysis, Halley's method is a root-finding algorithm used for functions of one real variable with a continuous second derivative. Edmond Halley was an English mathematician and astronomer who introduced the method now called by his name. The algorithm is second in the class of Householder's methods, after Newton's method.
In numerical analysis, inverse quadratic interpolation is a root-finding algorithm, meaning that it is an algorithm for solving equations of the form f(x) = 0. The idea is to use quadratic interpolation to approximate the inverse of f. This algorithm is rarely used on its own, but it is important because it forms part of the popular Brent's method.
In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: + (). In this case
The residue Res(f, c) of f at c is the coefficient a −1 of (z − c) −1 in the Laurent series expansion of f around c. Various methods exist for calculating this value, and the choice of which method to use depends on the function in question, and on the nature of the singularity. According to the residue theorem, we have:
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The formula for the one-way ANOVA F-test statistic is =, or =. The "explained variance", or "between-group variability" is = (¯ ¯) / where ¯ denotes the sample mean in the i-th group, is the number of observations in the i-th group, ¯ denotes the overall mean of the data, and denotes the number of groups.
Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0. It was first presented by David E. Muller in 1956. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method .