Search results
Results From The WOW.Com Content Network
The Golgi apparatus (/ ˈ ɡ ɒ l dʒ i /), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. [1] Part of the endomembrane system in the cytoplasm, it packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination.
The trans-Golgi network is an important part of the Golgi. It is located on the trans face of the Golgi apparatus and is made up of cisternae. The cisternae play a crucial role in the packaging, modification, and transport functions for the cell overall.
The Golgi apparatus (also known as the Golgi body and the Golgi complex) is composed of separate sacs called cisternae. Its shape is similar to a stack of pancakes. The number of these stacks varies with the specific function of the cell. The Golgi apparatus is used by the cell for further protein modification.
Golgi apparatus (also called the Golgi body, Golgi complex, or dictyosome), an organelle in a eukaryotic cell; Golgi tendon organ, a proprioceptive sensory receptor organ; Golgi's method or Golgi stain, a nervous tissue staining technique; Golgi alpha-mannosidase II, an enzyme; Golgi cell, a type of interneuron found in the cerebellum
Then the protein passes through the golgi apparatus, where it is packaged into a vesicle. In the vesicle, more parts are cut off, and it turns into mature insulin. In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis.
In the Golgi apparatus, the glycosylation of the proteins is modified and further post-translational modifications, including cleavage and functionalization, may occur. The proteins are then moved into secretory vesicles which travel along the cytoskeleton to the edge of the cell.
In eukaryotes, it occurs in the endoplasmic reticulum, Golgi apparatus and occasionally in the cytoplasm; in prokaryotes, it occurs in the cytoplasm. [1] Several different sugars can be added to the serine or threonine, and they affect the protein in different ways by changing protein stability and regulating protein activity.
It is a cap-like structure derived from the Golgi apparatus. In placental mammals, the acrosome contains degradative enzymes (including hyaluronidase and acrosin). [1] These enzymes break down the outer membrane of the ovum, [2] called the zona pellucida, allowing the haploid nucleus in the sperm cell to join with the haploid nucleus in the ovum.