Ad
related to: which detector used in ftir 5
Search results
Results From The WOW.Com Content Network
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic ( photodetectors ). The thermal effects of the incident IR radiation can be followed through many temperature dependent phenomena. [ 2 ]
Without the slit used in dispersive spectroscopy, FTIR allows more light to enter the spectrometer and gives a higher signal-to-noise ratio, i.e. a less-disturbed signal. [8] The IR laser used has a known wavelength and the velocity of the movable mirror can be controlled accordingly.
A nondispersive infrared sensor (or NDIR sensor) is a simple spectroscopic sensor often used as a gas detector.It is non-dispersive in the fact that no dispersive element (e.g a prism or diffraction grating as is often present in other spectrometers) is used to separate out (like a monochromator) the broadband light into a narrow spectrum suitable for gas sensing.
The method of Fourier-transform spectroscopy can also be used for absorption spectroscopy. The primary example is "FTIR Spectroscopy", a common technique in chemistry. In general, the goal of absorption spectroscopy is to measure how well a sample absorbs or transmits light at each different wavelength.
HgCdTe can also detect in the short wave infrared SWIR atmospheric windows of 2.2 to 2.4 μm and 1.5 to 1.8 μm. HgCdTe is a common material in photodetectors of Fourier transform infrared spectrometers. This is because of the large spectral range of HgCdTe detectors and also the high quantum efficiency.
The infrared light is emitted and passes through the sample gas, a reference gas with a known mixture of the gases in question and then through the "detector" chambers containing the pure forms of the gases in question. When a "detector" chamber absorbs some of the infrared radiation, it heats up and expands.
The mid-infrared, approximately 4,000–400 cm −1 (2.5–25 μm) is generally used to study the fundamental vibrations and associated rotational–vibrational structure. The far-infrared, approximately 400–10 cm −1 (25–1,000 μm) has low energy and may be used for rotational spectroscopy and low frequency vibrations.