Search results
Results From The WOW.Com Content Network
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
The expression should be based on the variable and the set. Function application applied to this form should give another expression in the same form. In this way any expression on functions of multiple values may be treated as if it had one value. It is not sufficient for the form to represent only the set of values.
Use of a user-defined function sq(x) in Microsoft Excel. The named variables x & y are identified in the Name Manager. The function sq is introduced using the Visual Basic editor supplied with Excel. Subroutine in Excel calculates the square of named column variable x read from the spreadsheet, and writes it into the named column variable y.
Multivalued functions of a complex variable have branch points. For example, for the nth root and logarithm functions, 0 is a branch point; for the arctangent function, the imaginary units i and −i are branch points. Using the branch points, these functions may be redefined to be single-valued functions, by restricting the range.
A real-valued function of a real variable is a function that takes as input a real number, commonly represented by the variable x, for producing another real number, the value of the function, commonly denoted f(x). For simplicity, in this article a real-valued function of a real variable will be simply called a function. To avoid any ambiguity ...
In probability theory, a convex function applied to the expected value of a random variable is always bounded above by the expected value of the convex function of the random variable. This result, known as Jensen's inequality , can be used to deduce inequalities such as the arithmetic–geometric mean inequality and Hölder's inequality .
t may contain some, all or none of the x 1, …, x n and it may contain other variables. In this case we say that function definition binds the variables x 1, …, x n. In this manner, function definition expressions of the kind shown above can be thought of as the variable binding operator, analogous to the lambda expressions of lambda calculus.
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().