Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
The Dagum distribution; The exponential distribution, which describes the time between consecutive rare random events in a process with no memory. The exponential-logarithmic distribution; The F-distribution, which is the distribution of the ratio of two (normalized) chi-squared-distributed random variables, used in the analysis of variance.
The Template:Infobox probability distribution generates a right-hand side infobox, based on the specified parameters. To use this template, copy the following code in your article and fill in as appropriate:
The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression .
Its complementary cumulative distribution function is a stretched exponential function. The Weibull distribution is related to a number of other probability distributions; in particular, it interpolates between the exponential distribution (k = 1) and the Rayleigh distribution (k = 2 and =). [5]
Boltzmann's distribution is an exponential distribution. Boltzmann factor (vertical axis) as a function of temperature T for several energy differences ε i − ε j.. In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution [1]) is a probability distribution or probability measure that gives the probability that a system will be in a certain ...
A distribution in an exponential family with parameter θ can be written with probability density function (PDF) = ( () ), where () and () are known functions. A distribution in a natural exponential family with parameter θ can thus be written with PDF = ( ). [Note that slightly different notation is used by the originator of the NEF ...
Almost all distribution functions with finite cumulant generating functions qualify as exponential dispersion models and most exponential dispersion models manifest variance functions of this form. Hence many probability distributions have variance functions that express this asymptotic behaviour, and the Tweedie distributions become foci of ...