When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  3. Proof of the Euler product formula for the Riemann zeta ...

    en.wikipedia.org/wiki/Proof_of_the_Euler_product...

    Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas (Various Observations about Infinite Series), published by St Petersburg Academy in 1737. [1] [2]

  4. Euler product - Wikipedia

    en.wikipedia.org/wiki/Euler_product

    Since for even values of s the Riemann zeta function ζ(s) has an analytic expression in terms of a rational multiple of π s, then for even exponents, this infinite product evaluates to a rational number. For example, since ζ(2) = ⁠ π 2 / 6 ⁠, ζ(4) = ⁠ π 4 / 90 ⁠, and ζ(8) = ⁠ π 8 / 9450 ⁠, then

  5. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  6. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Euler's Proof That 1 + 2 + 3 + ⋯ = −1/12 – by John Baez; John Baez (September 19, 2008). "My Favorite Numbers: 24" (PDF). The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable analytic continuation by Terence Tao; A recursive evaluation of zeta of negative integers by Luboš Motl

  7. Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/Leonhard_Euler

    In doing so, he discovered the connection between the Riemann zeta function and prime numbers; this is known as the Euler product formula for the Riemann zeta function. [85] Euler invented the totient function φ(n), the number of positive integers less than or equal to the integer n that are coprime to n.

  8. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    Similarly Selberg zeta functions satisfy the analogue of the Riemann hypothesis, and are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product expansion analogous to the Euler product expansion. But there are also some major differences; for example, they are not given by Dirichlet series.

  9. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.