Search results
Results From The WOW.Com Content Network
The single monoisotopic exception to the odd Z rule is beryllium; its single stable, primordial isotope, beryllium-9, has 4 protons and 5 neutrons. This element is prevented from having a stable isotope with equal numbers of neutrons and protons (beryllium-8, with 4 of each) by its instability toward alpha decay, which is favored due to the ...
Of the 26 "monoisotopic" elements that have only a single stable isotope, all but one have an odd atomic number—the single exception being beryllium. In addition, no odd-numbered element has more than two stable isotopes, while every even-numbered element with stable isotopes, except for helium, beryllium, and carbon, has at least three.
Certain elements have no stable isotopes and are composed only of radioisotopes: specifically the elements without any stable isotopes are technetium (atomic number 43), promethium (atomic number 61), and all observed elements with atomic number greater than 82. Of the 80 elements with at least one stable isotope, 26 have only one stable isotope.
Nitrogen-15 is a rare stable isotope of nitrogen. Two sources of nitrogen-15 are the positron emission of oxygen-15 [8] and the beta decay of carbon-15. Nitrogen-15 presents one of the lowest thermal neutron capture cross sections of all isotopes. [9] Nitrogen-15 is frequently used in NMR (Nitrogen-15 NMR spectroscopy).
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]
A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z). [ 1 ] The definitive visualisation of all 118 elements is the periodic table of the elements , whose history along the principles of the periodic law was one of the founding ...
The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. Isotopes are nuclides with the same number of protons but differing numbers of neutrons; that is, they have the same atomic number and are therefore the same chemical element. Isotopes neighbor each other vertically.
The mechanism for the creation of a synthetic element is to force additional protons into the nucleus of an element with an atomic number lower than 95. All known (see: Island of stability) synthetic elements are unstable, but they decay at widely varying rates; the half-lives of their longest-lived isotopes range from microseconds to millions ...