Search results
Results From The WOW.Com Content Network
The graph of =, with a straight line that is tangent to (,). The slope of the tangent line is equal to . (The axes of the graph do not use a 1:1 scale.) The derivative of a function is then simply the slope of this tangent line.
If x 0 is an interior point in the domain of a function f, then f is said to be differentiable at x 0 if the derivative ′ exists. In other words, the graph of f has a non-vertical tangent line at the point (x 0, f(x 0)). f is said to be differentiable on U if it is differentiable at every point of U.
An extremely special case of this is the following: if a differentiable function from reals to the reals has nonzero derivative at a zero of the function, then the zero is simple, i.e. it the graph is transverse to the x-axis at that zero; a zero derivative would mean a horizontal tangent to the curve, which would agree with the tangent space ...
The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the given point. [3] Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the surface at that point.
The slope of the constant function is 0, because the tangent line to the constant function is horizontal and its angle is 0. In other words, the value of the constant function, y {\textstyle y} , will not change as the value of x {\textstyle x} increases or decreases.
The graph of f is a concave up parabola, the critical point is the abscissa of the vertex, where the tangent line is horizontal, and the critical value is the ordinate of the vertex and may be represented by the intersection of this tangent line and the y-axis.
At =, however, there is a problem: the graph of the square root function becomes vertical, corresponding to a horizontal tangent for the square function. y = e x {\displaystyle y=e^{x}} (for real x ) has inverse x = ln y {\displaystyle x=\ln {y}} (for positive y {\displaystyle y} )
A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.