Search results
Results From The WOW.Com Content Network
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
A p-box (probability box). A probability box (or p-box) is a characterization of uncertain numbers consisting of both aleatoric and epistemic uncertainties that is often used in risk analysis or quantitative uncertainty modeling where numerical calculations must be performed.
Quantification of Margins and Uncertainty (QMU) is a decision support methodology for complex technical decisions. QMU focuses on the identification, characterization, and analysis of performance thresholds and their associated margins for engineering systems that are evaluated under conditions of uncertainty, particularly when portions of those results are generated using computational ...
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [ 1 ] for an idealized simple pendulum is, approximately,
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
Probability bounds analysis gives the same answer as interval analysis does when only range information is available. It also gives the same answers as Monte Carlo simulation does when information is abundant enough to precisely specify input distributions and their dependencies. Thus, it is a generalization of both interval analysis and ...
A misleading [1] information diagram showing additive and subtractive relationships among Shannon's basic quantities of information for correlated variables and .The area contained by both circles is the joint entropy (,).