Search results
Results From The WOW.Com Content Network
The sense of rotation of these currents may either be cyclonic or anticyclonic (such as Haida Eddies). Oceanic eddies are also usually made of water masses that are different from those outside the eddy. That is, the water within an eddy usually has different temperature and salinity characteristics to the water outside the eddy.
For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.
In a three-dimensional flow, vorticity (as measured by the volume integral of the square of its magnitude) can be intensified when a vortex line is extended — a phenomenon known as vortex stretching. [13] This phenomenon occurs in the formation of a bathtub vortex in outflowing water, and the build-up of a tornado by rising air currents.
For this reason flux represents physically a flow per unit area. Here t ^ {\displaystyle \mathbf {\hat {t}} \,\!} is a unit vector in the direction of the flow/current/flux. Quantity (common name/s)
A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.
This quantity is commonly called rothalpy, a compound word combining the terms rotation and enthalpy. However, its construction does not conform to the established rules for formation of new words in the English language, namely, that the roots of the new word originate from the same language.
A radially symmetrical flow field directed outwards from a common point is called a source flow. The central common point is the line source described above. Fluid is supplied at a constant rate from the source. As the fluid flows outward, the area of flow increases.
The term (ω ∙ ∇) u on the right-hand side describes the stretching or tilting of vorticity due to the flow velocity gradients. Note that (ω ∙ ∇) u is a vector quantity, as ω ∙ ∇ is a scalar differential operator, while ∇u is a nine-element tensor quantity. The term ω(∇ ∙ u) describes stretching of vorticity due to flow ...