When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Exergy - Wikipedia

    en.wikipedia.org/wiki/Exergy

    Exergy, often referred to as "available energy" or "useful work potential", is a fundamental concept in the field of thermodynamics and engineering.It plays a crucial role in understanding and quantifying the quality of energy within a system and its potential to perform useful work.

  3. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.

  4. Units of energy - Wikipedia

    en.wikipedia.org/wiki/Units_of_energy

    The British imperial units and U.S. customary units for both energy and work include the foot-pound force (1.3558 J), the British thermal unit (BTU) which has various values in the region of 1055 J, the horsepower-hour (2.6845 MJ), and the gasoline gallon equivalent (about 120 MJ).

  5. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Energy (from Ancient Greek ἐνέργεια (enérgeia) 'activity') is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light.

  6. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  7. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    In thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system.The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden.

  8. Exergy efficiency - Wikipedia

    en.wikipedia.org/wiki/Exergy_efficiency

    The reason the second-law efficiency is needed is because the first-law efficiencies fail to take into account an idealized version of the system for comparison. Using first-law efficiencies alone, can lead one to believe a system is more efficient than it is in reality.

  9. Gouy–Stodola theorem - Wikipedia

    en.wikipedia.org/wiki/Gouy–Stodola_theorem

    In thermodynamics and thermal physics, the Gouy-Stodola theorem is an important theorem for the quantification of irreversibilities in an open system, and aids in the exergy analysis of thermodynamic processes.