Search results
Results From The WOW.Com Content Network
An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal. [4] The term "Eulerian graph" is also sometimes used in a weaker sense to denote a graph where every vertex has even degree.
Furthermore, the longest path problem is solvable in polynomial time on any class of graphs with bounded treewidth or bounded clique-width, such as the distance-hereditary graphs. Finally, it is clearly NP-hard on all graph classes on which the Hamiltonian path problem is NP-hard, such as on split graphs, circle graphs, and planar graphs.
A Hamiltonian cycle around a network of six vertices Examples of Hamiltonian cycles on a square grid graph 8x8. In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once.
A verifier algorithm for Hamiltonian path will take as input a graph G, starting vertex s, and ending vertex t. Additionally, verifiers require a potential solution known as a certificate, c. For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end ...
This is more general than the Hamiltonian path problem, which only asks if a Hamiltonian path (or cycle) exists in a non-complete unweighted graph. The requirement of returning to the starting city does not change the computational complexity of the problem; see Hamiltonian path problem.
Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...
A circuit may refer to a closed trail or an element of the cycle space (an Eulerian spanning subgraph). The circuit rank of a graph is the dimension of its cycle space. circumference The circumference of a graph is the length of its longest simple cycle. The graph is Hamiltonian if and only if its circumference equals its order. class 1.
Goal: to construct a B(2, 4) de Bruijn sequence of length 2 4 = 16 using Eulerian (n − 1 = 4 − 1 = 3) 3-D de Bruijn graph cycle. Each edge in this 3-dimensional de Bruijn graph corresponds to a sequence of four digits: the three digits that label the vertex that the edge is leaving followed by the one that labels the edge.