When.com Web Search

  1. Ad

    related to: examples of divergence statistics questions

Search results

  1. Results From The WOW.Com Content Network
  2. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean distance (SED), and divergences can be viewed as

  3. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the ...

  4. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    It is ubiquitous in nature and statistics due to the central limit theorem: every variable that can be modelled as a sum of many small independent, identically distributed variables with finite mean and variance is approximately normal. The normal-exponential-gamma distribution; The normal-inverse Gaussian distribution

  6. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    In mathematical statistics, the Kullback–Leibler (KL) divergence (also called relative entropy and I-divergence [1]), denoted (), is a type of statistical distance: a measure of how much a model probability distribution Q is different from a true probability distribution P.

  7. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  8. Stein discrepancy - Wikipedia

    en.wikipedia.org/wiki/Stein_discrepancy

    A Stein discrepancy is a statistical divergence between two probability measures that is rooted in Stein's method.It was first formulated as a tool to assess the quality of Markov chain Monte Carlo samplers, [1] but has since been used in diverse settings in statistics, machine learning and computer science.

  9. Bregman divergence - Wikipedia

    en.wikipedia.org/wiki/Bregman_divergence

    In mathematics, specifically statistics and information geometry, a Bregman divergence or Bregman distance is a measure of difference between two points, defined in terms of a strictly convex function; they form an important class of divergences.