Search results
Results From The WOW.Com Content Network
Hence, the actual value of the coupling constant is only defined at a given energy scale. In QCD, the Z boson mass scale is typically chosen, providing a value of the strong coupling constant of α s (M Z 2) = 0.1179 ± 0.0010. [7] In 2023 Atlas measured α s (M Z 2) = 0.1183 ± 0.0009 the most precise so far.
written in terms of the fine structure constant in natural units, α = e 2 /4π. [2] This beta function tells us that the coupling increases with increasing energy scale, and QED becomes strongly coupled at high energy. In fact, the coupling apparently becomes infinite at some finite energy, resulting in a Landau pole. However, one cannot ...
Richard Feynman, one of the originators and early developers of the theory of quantum electrodynamics (QED), referred to the fine-structure constant in these terms: There is a most profound and beautiful question associated with the observed coupling constant, e – the amplitude for a real electron to emit or absorb a real photon. It is a ...
This singularity is the Landau pole with a negative residue, g(Λ) ≈ −Λ Landau / (β 2 (Λ − Λ Landau)).. In fact, however, the growth of g 0 invalidates Eqs. 1, 2 in the region g 0 ≈ 1, since these were obtained for g 0 ≪ 1, so that the nonperturbative existence of the Landau pole becomes questionable.
Because the theory is "sick" for any negative value of the coupling constant, the series does not converge but is at best an asymptotic series. From a modern perspective, we say that QED is not well defined as a quantum field theory to arbitrarily high energy. [30] The coupling constant runs to infinity at finite energy, signalling a Landau pole.
In classical field theory, such as gauge theory in four-dimensional spacetime, the coupling constant is a dimensionless constant. However, upon quantization, logarithmic divergences in one-loop diagrams of perturbation theory imply that this "constant" actually depends on the typical energy scale of the processes under considerations, called ...
This series diverges asymptotically, but in quantum electrodynamics (QED) at the second order the difference from experimental data is in the order of 10 −10. This close agreement holds because the coupling constant (also known as the fine-structure constant ) of QED is much less than 1.
This page was last edited on 8 June 2005, at 13:49 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...