When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Below is an example of a learning algorithm for a single-layer perceptron with a single output unit. For a single-layer perceptron with multiple output units, since the weights of one output unit are completely separate from all the others', the same algorithm can be run for each output unit.

  3. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    Attention in Machine Learning is a technique that mimics cognitive attention. In the context of learning on graphs, the attention coefficient α u v {\displaystyle \alpha _{uv}} measures how important is node u ∈ V {\displaystyle u\in V} to node v ∈ V {\displaystyle v\in V} .

  4. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    The forgetron variant of the kernel perceptron was suggested to deal with this problem. It maintains an active set of examples with non-zero α i, removing ("forgetting") examples from the active set when it exceeds a pre-determined budget and "shrinking" (lowering the weight of) old examples as new ones are promoted to non-zero α i. [5]

  5. ADALINE - Wikipedia

    en.wikipedia.org/wiki/ADALINE

    Learning inside a single-layer ADALINE Photo of an ADALINE machine, with hand-adjustable weights implemented by rheostats Schematic of a single ADALINE unit [1]. ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is an early single-layer artificial neural network and the name of the physical device that implemented it.

  6. Symbolic artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Symbolic_artificial...

    For example, experimental symbolic machine learning systems explored the ability to take high-level natural language advice and to interpret it into domain-specific actionable rules. Similar to the problems in handling dynamic domains, common-sense reasoning is also difficult to capture in formal reasoning.

  7. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The perceptron uses the Heaviside step function as the activation function (), and that means that ′ does not exist at zero, and is equal to zero elsewhere, which makes the direct application of the delta rule impossible.

  8. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    For example, machine learning has been used for classifying Android malware, [198] for identifying domains belonging to threat actors and for detecting URLs posing a security risk. [199] Research is underway on ANN systems designed for penetration testing, for detecting botnets, [200] credit cards frauds [201] and network intrusions.

  9. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable.