When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Concretely, let the multiple attention heads be indexed by , then we have (,,) = [] ((,,)) where the matrix is the concatenation of word embeddings, and the matrices ,, are "projection matrices" owned by individual attention head , and is a final projection matrix owned by the whole multi-headed attention head.

  3. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    During the deep learning era, attention mechanism was developed to solve similar problems in encoding-decoding. [1]In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text.

  4. Seq2seq - Wikipedia

    en.wikipedia.org/wiki/Seq2seq

    Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...

  5. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Multi-head attention enhances this process by introducing multiple parallel attention heads. Each attention head learns different linear projections of the Q, K, and V matrices. This allows the model to capture different aspects of the relationships between words in the sequence simultaneously, rather than focusing on a single aspect.

  6. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    When each head calculates, according to its own criteria, how much other tokens are relevant for the "it_" token, note that the second attention head, represented by the second column, is focusing most on the first two rows, i.e. the tokens "The" and "animal", while the third column is focusing most on the bottom two rows, i.e. on "tired ...

  7. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    Vision Transformer architecture, showing the encoder-only Transformer blocks inside. The basic architecture, used by the original 2020 paper, [1] is as follows. In summary, it is a BERT-like encoder-only Transformer.

  8. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of layers can be reduced to a two-layer input-output model.

  9. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    In recent years, Transformers, which rely on self-attention mechanisms instead of recurrence, have become the dominant architecture for many sequence-processing tasks, particularly in natural language processing, due to their superior handling of long-range dependencies and greater parallelizability. Nevertheless, RNNs remain relevant for ...