Search results
Results From The WOW.Com Content Network
Virtual memory makes application programming easier by hiding fragmentation of physical memory; by delegating to the kernel the burden of managing the memory hierarchy (eliminating the need for the program to handle overlays explicitly); and, when each process is run in its own dedicated address space, by obviating the need to relocate program code or to access memory with relative addressing.
Virtual memory can be backed by physical RAM, a disk file via mmap (on Unix-derivatives) or MapViewOfFile (on Windows), or swap space, and the operating system can move virtual memory pages around as it needs. Because virtual memory does not need to be backed by physical memory, exhaustion of it is rare, and usually there are other limits ...
Memory virtualization technology follows from memory management architectures and virtual memory techniques. In both fields, the path of innovation has moved from tightly coupled relationships between logical and physical resources to more flexible, abstracted relationships where physical resources are allocated as needed.
In effect, physical main memory becomes a cache for virtual memory, which is in general stored on disk in memory pages. Programs are allocated a certain number of pages as needed by the operating system. Active memory pages exist in both RAM and on disk. Inactive pages are removed from the cache and written to disk when the main memory becomes ...
Programs which use the same library have virtual addresses that map to the same pages (which contain the library's code and data). When programs want to modify the library's code, they use copy-on-write, so memory is only allocated when needed. Shared memory is an efficient means of communication between programs.
A modern computer operating system usually uses virtual memory to provide separate address spaces or separate regions of a single address space, called user space and kernel space. [1] [a] Primarily, this separation serves to provide memory protection and hardware protection from malicious or errant software behaviour.
Single-level storage (SLS) or single-level memory is a computer storage term which has had two meanings. The two meanings are related in that in both, pages of memory may be in primary storage or in secondary storage (disk), and that the physical location of a page is unimportant to a process.
A number of key data structures used by a processor need to be shadowed. Because most operating systems use paged virtual memory, and granting the guest OS direct access to the MMU would mean loss of control by the virtualization manager, some of the work of the x86 MMU needs to be duplicated in software for the guest OS using a technique known ...