Search results
Results From The WOW.Com Content Network
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
Euler's formula states that, for any real number x, one has = + , where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively.
An important property of three-phase power is that the instantaneous power available to a resistive load, = =, is constant at all times.Indeed, let = = To simplify the mathematics, we define a nondimensionalized power for intermediate calculations, =
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
Sine power-reduction formula: an illustrative diagram. The shaded blue and green triangles, and the red-outlined triangle E B D {\displaystyle EBD} are all right-angled and similar, and all contain the angle θ {\displaystyle \theta } .
The sine and cosine functions are one-dimensional projections of uniform circular motion. Trigonometric functions also prove to be useful in the study of general periodic functions. The characteristic wave patterns of periodic functions are useful for modeling recurring phenomena such as sound or light waves. [28]
A wave packet has an envelope that describes the overall amplitude of the wave; within the envelope, the distance between adjacent peaks or troughs is sometimes called a local wavelength. [21] [22] An example is shown in the figure. In general, the envelope of the wave packet moves at a speed different from the constituent waves. [23]
The same sinusoidal plane wave above can also be expressed in terms of sine instead of cosine using the elementary identity = (+ /) (,) = ((^) + ′) where ′ = + /.Thus the value and meaning of the phase shift depends on whether the wave is defined in terms of sine or co-sine.