When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  3. Initial value theorem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_theorem

    Of course we don't really need DCT here, one can give a very simple proof using only elementary calculus: Start by choosing A {\displaystyle A} so that ∫ A ∞ e − t d t < ϵ {\displaystyle \int _{A}^{\infty }e^{-t}\,dt<\epsilon } , and then note that lim s → ∞ f ( t s ) = α {\displaystyle \lim _{s\to \infty }f\left({\frac {t}{s ...

  4. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).

  5. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  6. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L 1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis .

  7. Hardy–Littlewood Tauberian theorem - Wikipedia

    en.wikipedia.org/wiki/Hardy–Littlewood...

    The integral formulation of the theorem relates in an analogous manner the asymptotics of the cumulative distribution function of a function with the asymptotics of its Laplace transform. The theorem was proved in 1914 by G. H. Hardy and J. E. Littlewood. [1]: 226 In 1930, Jovan Karamata gave a new and much simpler proof. [1]: 226

  8. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    They have solved numerous problems which exhibit circular cylindrical symmetry employing the toroidal functions. The above expressions for the Green's function for the three-variable Laplace operator are examples of single summation expressions for this Green's function. There are also single-integral expressions for this Green's function.

  9. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform: