When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spin crossover - Wikipedia

    en.wikipedia.org/wiki/Spin_crossover

    Spin crossover is sometimes referred to as spin transition or spin equilibrium behavior. The change in spin state usually involves interchange of low spin (LS) and high spin (HS) configuration. [2] Spin crossover is commonly observed with first row transition metal complexes with a d 4 through d 7 electron configuration in an octahedral ligand ...

  3. Spin states (d electrons) - Wikipedia

    en.wikipedia.org/wiki/Spin_states_(d_electrons)

    Low-spin [Fe(NO 2) 6] 3− crystal field diagram. The Δ splitting of the d orbitals plays an important role in the electron spin state of a coordination complex. Three factors affect Δ: the period (row in periodic table) of the metal ion, the charge of the metal ion, and the field strength of the complex's ligands as described by the spectrochemical series.

  4. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    In an octahedral complex, the molecular orbitals created by coordination can be seen as resulting from the donation of two electrons by each of six σ-donor ligands to the d-orbitals on the metal. In octahedral complexes, ligands approach along the x -, y - and z -axes, so their σ-symmetry orbitals form bonding and anti-bonding combinations ...

  5. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  6. Tanabe–Sugano diagram - Wikipedia

    en.wikipedia.org/wiki/Tanabe–Sugano_diagram

    A consequence of the much smaller size of Δ T results in (almost) all tetrahedral complexes being high spin and therefore the change in the ground state term seen on the X-axis for octahedral d 4-d 7 diagrams is not required for interpreting spectra of tetrahedral complexes.

  7. d electron count - Wikipedia

    en.wikipedia.org/wiki/D_electron_count

    Complexes which are d 8 high-spin are usually octahedral (or tetrahedral) while low-spin d 8 complexes are generally 16-electron square planar complexes. For first row transition metal complexes such as Ni 2+ and Cu + also form five-coordinate 18-electron species which vary from square pyramidal to trigonal bipyramidal .

  8. 18-electron rule - Wikipedia

    en.wikipedia.org/wiki/18-electron_rule

    The most famous example is Vaska's complex (IrCl(CO)(PPh 3) 2), [PtCl 4] 2−, and Zeise's salt [PtCl 3 (η 2-C 2 H 4)] −. In such complexes, the d z 2 orbital is doubly occupied and nonbonding. Many catalytic cycles operate via complexes that alternate between 18-electron and square-planar 16-electron configurations.

  9. Jahn–Teller effect - Wikipedia

    en.wikipedia.org/wiki/Jahn–Teller_effect

    The Jahn–Teller effect (JT effect or JTE) is an important mechanism of spontaneous symmetry breaking in molecular and solid-state systems which has far-reaching consequences in different fields, and is responsible for a variety of phenomena in spectroscopy, stereochemistry, crystal chemistry, molecular and solid-state physics, and materials science.

  1. Related searches high spin octahedral complex solution examples in real life situation for math models

    octahedral high spinhigh spin configurations
    octahedral spin states