When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    where =, =, … are the value vectors, linearly transformed by another matrix to provide the model with freedom to find the best way to represent values. Without the matrices W Q , W K , W V {\displaystyle W^{Q},W^{K},W^{V}} , the model would be forced to use the same hidden vector for both key and value, which might not be appropriate, as ...

  3. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    The RNNsearch model introduced an attention mechanism to seq2seq for machine translation to solve the bottleneck problem (of the fixed-size output vector), allowing the model to process long-distance dependencies more easily. The name is because it "emulates searching through a source sentence during decoding a translation".

  4. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    In addition, the scope of attention, or the range of token relationships captured by each attention head, can expand as tokens pass through successive layers. This allows the model to capture more complex and long-range dependencies in deeper layers. Many transformer attention heads encode relevance relations that are meaningful to humans.

  5. Seq2seq - Wikipedia

    en.wikipedia.org/wiki/Seq2seq

    Seq2seq RNN encoder-decoder with attention mechanism, training Seq2seq RNN encoder-decoder with attention mechanism, training and inferring The attention mechanism is an enhancement introduced by Bahdanau et al. in 2014 to address limitations in the basic Seq2Seq architecture where a longer input sequence results in the hidden state output of ...

  6. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    For example, the small (i.e. 117M parameter sized) GPT-2 model has had twelve attention heads and a context window of only 1k tokens. [44] In its medium version it has 345M parameters and contains 24 layers, each with 12 attention heads. For the training with gradient descent a batch size of 512 was utilized. [28]

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In 1943, Warren McCulloch and Walter Pitts proposed the binary artificial neuron as a logical model of biological neural networks. [11]In 1958, Frank Rosenblatt proposed the multilayered perceptron model, consisting of an input layer, a hidden layer with randomized weights that did not learn, and an output layer with learnable connections.

  9. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    The graph attention network (GAT) was introduced by Petar Veličković et al. in 2018. [11] Graph attention network is a combination of a GNN and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data.