When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    This process yields p 0,4 (x), the value of the polynomial going through the n + 1 data points (x i, y i) at the point x. This algorithm needs O(n 2) floating point operations to interpolate a single point, and O(n 3) floating point operations to interpolate a polynomial of degree n.

  3. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  4. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  5. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.

  6. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    The resulting polynomial has a degree less than n(m + 1). (In a more general case, there is no need for m to be a fixed value; that is, some points may have more known derivatives than others. In this case the resulting polynomial has a degree less than the number of data points.)

  7. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    This is illustrated by Wilkinson's polynomial: the roots of this polynomial of degree 20 are the 20 first positive integers; changing the last bit of the 32-bit representation of one of its coefficient (equal to –210) produces a polynomial with only 10 real roots and 10 complex roots with imaginary parts larger than 0.6.

  8. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method fits a parabola, i.e. a second-order polynomial, to the last three obtained points f(x k-1), f(x k-2) and f(x k-3) in each iteration. One can generalize this and fit a polynomial p k,m (x) of degree m to the last m+1 points in the k th iteration. Our parabola y k is written as p k,2 in this notation. The degree m must be 1 or ...

  9. Chebyshev nodes - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_nodes

    For both kinds of nodes, we first plot the points equi-distant on the upper half unit circle in blue. Then the blue points are projected down to the x-axis. The projected points, in red, are the Chebyshev nodes. In numerical analysis, Chebyshev nodes are a set of specific real algebraic numbers, used as nodes for polynomial interpolation.