When.com Web Search

  1. Ads

    related to: graphing rational function examples math facts

Search results

  1. Results From The WOW.Com Content Network
  2. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    The degree of the graph of a rational function is not the degree as defined above: it is the maximum of the degree of the numerator and one plus the degree of the denominator. In some contexts, such as in asymptotic analysis, the degree of a rational function is the difference between the degrees of the numerator and the denominator.

  3. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Dirichlet function: is an indicator function that matches 1 to rational numbers and 0 to irrationals. It is nowhere continuous. Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function.

  4. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  5. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function. The rational function model is a generalization of the polynomial model: rational function models contain polynomial models as a subset (i.e., the case when the denominator is a constant).

  6. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    A common example of a vertical asymptote is the case of a rational function at a point x such that the denominator is zero and the numerator is non-zero. If a function has a vertical asymptote, then it isn't necessarily true that the derivative of the function has a vertical asymptote at the same place.

  7. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. [ 4 ] Since every rational number has a unique representation with coprime (also termed relatively prime) p ∈ Z {\displaystyle p\in \mathbb {Z} } and q ∈ N {\displaystyle q\in \mathbb {N ...

  8. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    It turns out functions like this have certain properties that cast insight into math topics like Algebra and Number Theory. British mathematicians Bryan Birch and Peter Swinnerton-Dyer developed ...

  9. Rose (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rose_(mathematics)

    Graphs of roses are composed of petals.A petal is the shape formed by the graph of a half-cycle of the sinusoid that specifies the rose. (A cycle is a portion of a sinusoid that is one period T = ⁠ 2π / k ⁠ long and consists of a positive half-cycle, the continuous set of points where r ≥ 0 and is ⁠ T / 2 ⁠ = ⁠ π / k ⁠ long, and a negative half-cycle is the other half where r ...