Search results
Results From The WOW.Com Content Network
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
A great circle lies on a plane passing through the center of the sphere, so its extrinsic radius is equal to the radius of the sphere itself, and its extrinsic center is the sphere's center. A small circle lies on a plane not passing through the sphere's center, so its extrinsic radius is smaller than that of the sphere and its extrinsic center ...
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle.Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2]
In spherical geometry, the basic concepts are point and great circle. However, two great circles on a plane intersect in two antipodal points, unlike coplanar lines in Elliptic geometry. In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center.
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
Any other circle of the sphere is called a small circle, and is the intersection of the sphere with a plane not passing through its center. Small circles are the spherical-geometry analog of circles in Euclidean space. Every circle in Euclidean 3-space is a great circle of exactly one sphere. The disk bounded by a great circle is called a great ...
Lie sphere geometry is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. [1] The main idea which leads to Lie sphere geometry is that lines (or planes) should be regarded as circles (or spheres) of infinite radius and that ...
Dually, if v is a vertex of P, then there is a cone that has its apex at v and that is tangent to O in a circle; this circle forms the boundary of a spherical cap within which the sphere's surface is visible from the vertex. That is, the circle is the horizon of the midsphere, as viewed from the vertex. The circles formed in this way are ...