Search results
Results From The WOW.Com Content Network
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered ...
Central tendency. In statistics, a central tendency (or measure of central tendency) is a central or typical value for a probability distribution. [1] Colloquially, measures of central tendency are often called averages. The term central tendency dates from the late 1920s. [2]
The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean , [1] It shows the extent of variability in relation to the mean of the population. The coefficient of variation should be computed only for data measured on scales that have a meaningful zero (ratio scale) and hence allow relative comparison of two ...
Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .
In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line Z {\displaystyle \mathbb {Z} } which starts at 0, and at each step moves ...
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
In descriptive statistics, the range of a set of data is size of the narrowest interval which contains all the data. It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum). [1] It is expressed in the same units as the data. The range provides an indication of statistical dispersion.
In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions. Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. [1]